Article ID Journal Published Year Pages File Type
4600241 Linear Algebra and its Applications 2012 17 Pages PDF
Abstract

The problem of writing real zero polynomials as determinants of linear matrix polynomials has recently attracted a lot of attention. Helton and Vinnikov [9], have proved that any real zero polynomial in two variables has a determinantal representation. Brändén [2] has shown that the result does not extend to arbitrary numbers of variables, disproving the generalized Lax conjecture. We prove that in fact almost no real zero polynomial admits a determinantal representation; there are dimensional differences between the two sets. The result follows from a general upper bound on the size of linear matrix polynomials. We then provide a large class of surprisingly simple explicit real zero polynomials that do not have a determinantal representation. We finally characterize polynomials of which some power has a determinantal representation, in terms of an algebra with involution having a finite dimensional representation. We use the characterization to prove that any quadratic real zero polynomial has a determinantal representation, after taking a high enough power. Taking powers is thereby really necessary in general. The representations emerge explicitly, and we characterize them up to unitary equivalence.

Related Topics
Physical Sciences and Engineering Mathematics Algebra and Number Theory