Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
4600407 | Linear Algebra and its Applications | 2012 | 19 Pages |
Abstract
This paper presents a spectral analysis for an alignment matrix that arises in reconstruction of a global coordinate system from local coordinate systems through alignment in manifold learning. Some characterizations of its eigenvalues and its null space as well as a lower bound for the smallest positive eigenvalue are given, which generalize earlier results of Li et al. (2007) [4], to include a more general situation that arises in alignments of local sections of different dimensions. Our results provide a theoretical understanding of the Local Tangent Space Alignment (LTSA) method (Zhang and Zha (2004) [12]) for nonlinear manifold learning and address some computational issues related to the method.
Related Topics
Physical Sciences and Engineering
Mathematics
Algebra and Number Theory