Article ID Journal Published Year Pages File Type
4600756 Linear Algebra and its Applications 2012 5 Pages PDF
Abstract

The concept of pseudo-distance-regularity around a vertex of a graph is a natural generalization, for non-regular graphs, of the standard distance-regularity around a vertex. In this note, we prove that a pseudo-distance-regular graph around each of its vertices is either distance-regular or distance-biregular. By using a combinatorial approach, the same conclusion was reached by Godsil and Shawe-Taylor for a distance-regular graph around each of its vertices. Thus, our proof, which is of an algebraic nature, can also be seen as an alternative demonstration of Godsil and Shawe-Taylor’s theorem.

Related Topics
Physical Sciences and Engineering Mathematics Algebra and Number Theory