Article ID Journal Published Year Pages File Type
4600765 Linear Algebra and its Applications 2012 28 Pages PDF
Abstract

The nonnegative rank of a nonnegative matrix is the minimum number of nonnegative rank-one factors needed to reconstruct it exactly. The problem of determining this rank and computing the corresponding nonnegative factors is difficult; however it has many potential applications, e.g., in data mining and graph theory. In particular, it can be used to characterize the minimal size of any extended reformulation of a given polytope. In this paper, we introduce and study a related quantity, called the restricted nonnegative rank. We show that computing this quantity is equivalent to a problem in computational geometry, and fully characterize its computational complexity. This in turn sheds new light on the nonnegative rank problem, and in particular allows us to provide new improved lower bounds based on its geometric interpretation. We apply these results to slack matrices and linear Euclidean distance matrices and obtain counter-examples to two conjectures of Beasley and Laffey, namely we show that the nonnegative rank of linear Euclidean distance matrices is not necessarily equal to their dimension, and that the rank of a matrix is not always greater than the nonnegative rank of its square.

Related Topics
Physical Sciences and Engineering Mathematics Algebra and Number Theory