Article ID Journal Published Year Pages File Type
4600820 Linear Algebra and its Applications 2011 10 Pages PDF
Abstract

Consider a graph Γ on n vertices with adjacency matrix A and degree sequence (d1,…,dn). A universal adjacency matrix of Γ is any matrix in Span {A,D,I,J} with a nonzero coefficient for A, where and I and J are the n×n identity and all-ones matrix, respectively. Thus a universal adjacency matrix is a common generalization of the adjacency, the Laplacian, the signless Laplacian and the Seidel matrix. We investigate graphs for which some universal adjacency matrix has just two eigenvalues. The regular ones are strongly regular, complete or empty, but several other interesting classes occur.

Related Topics
Physical Sciences and Engineering Mathematics Algebra and Number Theory