Article ID Journal Published Year Pages File Type
4600825 Linear Algebra and its Applications 2011 6 Pages PDF
Abstract

In this paper, we consider the signless Laplacians of simple graphs and we give some eigenvalue inequalities. We first consider an interlacing theorem when a vertex is deleted. In particular, let G-v be a graph obtained from graph G by deleting its vertex v and κi(G) be the ith largest eigenvalue of the signless Laplacian of G, we show that κi+1(G)-1⩽κi(G-v)⩽κi(G). Next, we consider the third largest eigenvalue κ3(G) and we give a lower bound in terms of the third largest degree d3 of the graph G. In particular, we prove that . Furthermore, we show that in several situations the latter bound can be increased to d3-1.

Related Topics
Physical Sciences and Engineering Mathematics Algebra and Number Theory