Article ID Journal Published Year Pages File Type
4600841 Linear Algebra and its Applications 2012 30 Pages PDF
Abstract

We consider the normalized Laplace operator for directed graphs with positive and negative edge weights. This generalization of the normalized Laplace operator for undirected graphs is used to characterize directed acyclic graphs. Moreover, we identify certain structural properties of the underlying graph with extremal eigenvalues of the normalized Laplace operator. We prove comparison theorems that establish a relationship between the eigenvalues of directed graphs and certain undirected graphs. This relationship is used to derive eigenvalue estimates for directed graphs. Finally we introduce the concept of neighborhood graphs for directed graphs and use it to obtain further eigenvalue estimates.

Related Topics
Physical Sciences and Engineering Mathematics Algebra and Number Theory