Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
4600946 | Linear Algebra and its Applications | 2012 | 8 Pages |
Recently, a large number of results have appeared on the small weights of the (dual) linear codes arising from finite projective spaces. We now focus on the large weights of these linear codes. For q even, this study for the code Ck(n,q)⊥ reduces to the theory of minimal blocking sets with respect to the k-spaces of PG(n,q), odd-blocking the k-spaces. For q odd, in a lot of cases, the maximum weight of the code Ck(n,q)⊥ is equal to qn+⋯+q+1, but some unexpected exceptions arise to this result. In particular, the maximum weight of the code C1(n,3)⊥ turns out to be 3n+3n-1. In general, the problem of whether the maximum weight of the code Ck(n,q)⊥, with q=3h (h⩾1), is equal to qn+⋯+q+1, reduces to the problem of the existence of sets of points in PG(n,q) intersecting every k-space in points.