Article ID Journal Published Year Pages File Type
4600953 Linear Algebra and its Applications 2012 15 Pages PDF
Abstract

We consider matrix-vector equations of the form Ax=f(x) that are motivated by nonlinear oscillating systems such as the Tacoma Narrows Bridge. We identify a particular set, called the Fučı´k Spectrum, which is relevant to questions of solvability, and we develop theorems to describe the spectrum and show how it relates to the solvability of the matrix equation.

Related Topics
Physical Sciences and Engineering Mathematics Algebra and Number Theory