Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
4600975 | Linear Algebra and its Applications | 2011 | 11 Pages |
Abstract
If G is a connected undirected simple graph on n vertices and n+c-1 edges, then G is called a c-cyclic graph. Specially, G is called a tricyclic graph if c=3. Let Δ(G) be the maximum degree of G. In this paper, we determine the structural characterizations of the c-cyclic graphs, which have the maximum spectral radii (resp. signless Laplacian spectral radii) in the class of c-cyclic graphs on n vertices with fixed maximum degree . Moreover, we prove that the spectral radius of a tricyclic graph G strictly increases with its maximum degree when , and identify the first six largest spectral radii and the corresponding graphs in the class of tricyclic graphs on n vertices.
Related Topics
Physical Sciences and Engineering
Mathematics
Algebra and Number Theory