Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
4601014 | Linear Algebra and its Applications | 2012 | 19 Pages |
Abstract
Cayley’s hyperdeterminant is a homogeneous polynomial of degree 4 in the 8 entries of a 2×2×2 array. It is the simplest (nonconstant) polynomial which is invariant under changes of basis in three directions. We use elementary facts about representations of the 3-dimensional simple Lie algebra sl2(C) to reduce the problem of finding the invariant polynomials for a 2×2×2 array to a combinatorial problem on the enumeration of 2×2×2 arrays with non-negative integer entries. We then apply results from linear algebra to obtain a new proof that Cayley’s hyperdeterminant generates all the invariants. In the last section we discuss the application of our methods to general multidimensional arrays.
Related Topics
Physical Sciences and Engineering
Mathematics
Algebra and Number Theory