Article ID Journal Published Year Pages File Type
4601037 Linear Algebra and its Applications 2011 13 Pages PDF
Abstract

We investigate simultaneous solutions of the matrix Sylvester equations AiX-XBi=Ci,i=1,2,…,k, where {A1,…,Ak} and {B1,…,Bk} are k-tuples of commuting matrices of order m×m and p×p, respectively. We show that the matrix Sylvester equations have a unique solution X for every compatible k-tuple of m×p matrices {C1,…,Ck} if and only if the joint spectra σ(A1,…,Ak) and σ(B1,…,Bk) are disjoint. We discuss the connection between the simultaneous solutions of Sylvester equations and related questions about idempotent matrices separating disjoint subsets of the joint spectrum, spectral mapping for the differences of commuting k-tuples, and a characterization of the joint spectrum via simultaneous solutions of systems of linear equations.

Related Topics
Physical Sciences and Engineering Mathematics Algebra and Number Theory