Article ID Journal Published Year Pages File Type
4601048 Linear Algebra and its Applications 2011 25 Pages PDF
Abstract

Some spectral properties of the transition matrix of an oriented graph indicate the preconditioning of Euler–Richardson (ER) iterative scheme as a good way to compute efficiently the vertexrank vector associated with such graph. We choose the preconditioner from an algebra U of matrices, thereby obtaining an ERU method, and we observe that ERU can outperform ER in terms of rate of convergence. The proposed preconditioner can be updated at a very low cost whenever the graph changes, as is the case when it represents a generic set of information. The particular U utilized requires a surplus of operations per step and memory allocations, which make ERU superior to ER for not too wide graphs. However, the observed high improvement in convergence rate obtained by preconditioning and the general theory developed, are a reason for investigating different choices of U, more efficient for huge graphs.

Related Topics
Physical Sciences and Engineering Mathematics Algebra and Number Theory