Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
4601050 | Linear Algebra and its Applications | 2011 | 13 Pages |
Abstract
A partial matrix over a field F is a matrix whose entries are either elements of F or independent indeterminates. A completion of such a partial matrix is obtained by specifying values from F for the indeterminates. We determine the maximum possible number of indeterminates in a partial m×n matrix whose completions all have rank at least equal to a particular k, and we fully describe those examples in which this maximum is attained. Our main theoretical tool, which is developed in Section 2, is a duality relationship between affine spaces of matrices in which ranks are bounded below and affine spaces of matrices in which the (left or right) nullspaces of elements possess a certain covering property.
Related Topics
Physical Sciences and Engineering
Mathematics
Algebra and Number Theory