Article ID Journal Published Year Pages File Type
4601105 Linear Algebra and its Applications 2012 7 Pages PDF
Abstract

We investigate the Kapranov rank functions of tropical matrices for different ground fields. For any infinite ground field we show that the rank-product inequality holds for Kapranov rank, and we prove that the Kapranov rank respects Green’s preorders on the semigroup of tropical n-by-n matrices. The rank-product inequality is shown to fail for Kapranov rank over any finite ground field. We provide an example of a 7-by-7 01-matrix whose Kapranov rank is independent of a ground field, equals 6, and exceeds tropical rank.

Related Topics
Physical Sciences and Engineering Mathematics Algebra and Number Theory