Article ID Journal Published Year Pages File Type
4601137 Linear Algebra and its Applications 2012 12 Pages PDF
Abstract

Let G be a graph with n vertices and e(G) edges, and let μ1(G)⩾μ2(G)⩾⋯⩾μn(G)=0 be the Laplacian eigenvalues of G. Let , where . Brouwer conjectured that for . It has been shown in Haemers et al. [7] that the conjecture is true for trees. We give upper bounds for Sk(G), and in particular, we show that the conjecture is true for unicyclic and bicyclic graphs.

Related Topics
Physical Sciences and Engineering Mathematics Algebra and Number Theory