Article ID Journal Published Year Pages File Type
4601140 Linear Algebra and its Applications 2012 20 Pages PDF
Abstract

The problem of finding the minimum rank over all symmetric matrices corresponding to a given graph has grown in interest recently. It is well known that the minimum rank of any graph is bounded above by the clique cover number, the minimum number of cliques needed to cover all edges of the graph. We generalize the idea of the clique cover number by defining the rank sum of a cover to be the sum of the minimum ranks of the graphs in the cover. Using this idea we obtain a combinatorial solution to the minimum rank problem for an outerplanar graph. As a consequence the minimum rank of an outerplanar graph is field independent and all outerplanar graphs have a universally optimal matrix. We also consider implications of the main result to the inverse inertia problem.

Related Topics
Physical Sciences and Engineering Mathematics Algebra and Number Theory