Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
4601178 | Linear Algebra and its Applications | 2011 | 8 Pages |
Abstract
For a pair of n×n Hermitian matrices H and K, a real ternary homogeneous polynomial defined by F(t,x,y)=det(tIn+xH+yK) is hyperbolic with respect to (1,0,0). The Fiedler conjecture (or Lax conjecture) is recently affirmed, namely, for any real ternary hyperbolic polynomial F(t,x,y), there exist real symmetric matrices S1 and S2 such that F(t,x,y)=det(tIn+xS1+yS2). In this paper, we give a constructive proof of the existence of symmetric matrices for the ternary forms associated with trigonometric polynomials.
Related Topics
Physical Sciences and Engineering
Mathematics
Algebra and Number Theory