Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
4601193 | Linear Algebra and its Applications | 2011 | 11 Pages |
Abstract
It is shown that if L and D are the Laplacian and the distance matrix of a tree respectively, then any minor of the Laplacian equals the sum of the cofactors of the complementary submatrix of D, up to sign and a power of 2. An analogous, more general result is proved for the Laplacian and the resistance matrix of any graph. A similar identity is proved for graphs in which each block is a complete graph on r vertices, and for q-analogues of such matrices of a tree. Our main tool is an identity for the minors of a matrix and its inverse.
Related Topics
Physical Sciences and Engineering
Mathematics
Algebra and Number Theory