Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
4601228 | Linear Algebra and its Applications | 2011 | 7 Pages |
Abstract
The Laplacian spread of a graph is defined to be the difference between the largest eigenvalue and the second-smallest eigenvalue of the Laplacian matrix of the graph. Bao, Tan and Fan [Y.H. Bao, Y.Y. Tan,Y.Z. Fan, The Laplacian spread of unicyclic graphs, Appl. Math. Lett. 22 (2009) 1011–1015.] characterize the unique unicyclic graph with maximum Laplacian spread among all connected unicyclic graphs of fixed order. In this paper, we characterize the unique quasi-tree graph with maximum Laplacian spread among all quasi-tree graphs in the set Q(n,d) with .
Related Topics
Physical Sciences and Engineering
Mathematics
Algebra and Number Theory