Article ID Journal Published Year Pages File Type
4601286 Linear Algebra and its Applications 2011 14 Pages PDF
Abstract

This paper is concerned with algebras generated by two idempotents P and Q satisfying (PQ)m=(QP)m and (PQ)m-1≠(QP)m-1. The main result is the classification of all these algebras, implying that for each m⩾2 there exist exactly eight nonisomorphic copies. As an application, it is shown that if an element of such an algebra has a nondegenerate leading term, then it is group invertible, and a formula for the explicit computation of the group inverse is given.

Related Topics
Physical Sciences and Engineering Mathematics Algebra and Number Theory