Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
4601439 | Linear Algebra and its Applications | 2011 | 29 Pages |
Abstract
Given an n-vertex graph G=(V,E), the Laplacian spectrum of G is the set of eigenvalues of the Laplacian matrix L=D-A, where D and A denote the diagonal matrix of vertex-degrees and the adjacency matrix of G, respectively. In this paper, we study the Laplacian spectrum of trees. More precisely, we find a new upper bound on the sum of the k largest Laplacian eigenvalues of every n-vertex tree, where k∈{1,…,n}. This result is used to establish that the n-vertex star has the highest Laplacian energy over all n-vertex trees, which answers affirmatively to a question raised by Radenković and Gutman [10].
Related Topics
Physical Sciences and Engineering
Mathematics
Algebra and Number Theory