Article ID Journal Published Year Pages File Type
4601457 Linear Algebra and its Applications 2011 13 Pages PDF
Abstract

We focus on Gröbner bases for modules of univariate polynomial vectors over a ring. We identify a useful property, the “predictable leading monomial (PLM) property” that is shared by minimal Gröbner bases of modules in F[x]q, no matter what positional term order is used. The PLM property is useful in a range of applications and can be seen as a strengthening of the wellknown predictable degree property (= row reducedness), a terminology introduced by Forney in the 70’s. Because of the presence of zero divisors, minimal Gröbner bases over a finite ring of the type Zpr (where p is a prime integer and r is an integer >1) do not necessarily have the PLM property. In this paper we show how to derive, from an ordered minimal Gröbner basis, a so-called “minimal Gröbner p-basis” that does have a PLM property. We demonstrate that minimal Gröbner p-bases lend themselves particularly well to derive minimal realization parametrizations over Zpr. Applications are in coding and sequences over Zpr.

Related Topics
Physical Sciences and Engineering Mathematics Algebra and Number Theory