Article ID Journal Published Year Pages File Type
4601462 Linear Algebra and its Applications 2011 11 Pages PDF
Abstract

We study the properties of palindromic quadratic matrix polynomials φ(z)=P+Qz+Pz2, i.e., quadratic polynomials where the coefficients P and Q are square matrices, and where the constant and the leading coefficients are equal. We show that, for suitable choices of the matrix coefficients P and Q, it is possible to characterize by means of φ(z) well known matrix functions, namely the matrix square root, the matrix polar factor, the matrix sign and the geometric mean of two matrices. Finally we provide some integral representations of these matrix functions.

Related Topics
Physical Sciences and Engineering Mathematics Algebra and Number Theory