Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
4601505 | Linear Algebra and its Applications | 2011 | 16 Pages |
Abstract
In this paper, we propose the palindromic doubling algorithm (PDA) for the palindromic generalized eigenvalue problem (PGEP) A∗x=λAx. We establish a complete convergence theory of the PDA for PGEPs without unimodular eigenvalues, or with unimodular eigenvalues of partial multiplicities two (one or two for eigenvalue 1). Some important applications from the vibration analysis and the optimal control for singular descriptor linear systems will be presented to illustrate the feasibility and efficiency of the PDA.
Related Topics
Physical Sciences and Engineering
Mathematics
Algebra and Number Theory