Article ID Journal Published Year Pages File Type
4601512 Linear Algebra and its Applications 2011 15 Pages PDF
Abstract

Given n+1 pairs of complex numbers and vectors (closed under complex conjugation), the inverse quadratic eigenvalue problem is to construct real symmetric or anti-symmetric matrix C and real symmetric matrix K of size n×n so that the quadratic pencil Q(λ)=λ2In+λC+K has the given n+1 pairs as eigenpairs. Necessary and sufficient conditions under which this quadratic inverse eigenvalue problem is solvable are obtained. Numerical algorithms for solving the problem are developed. Numerical examples illustrating these solutions are presented.

Related Topics
Physical Sciences and Engineering Mathematics Algebra and Number Theory