Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
4601559 | Linear Algebra and its Applications | 2010 | 14 Pages |
Abstract
Let Mn be the algebra of all n×n matrices, and let φ:Mn→Mn be a linear mapping. We say that φ is a multiplicative mapping at G if φ(ST)=φ(S)φ(T) for any S,T∈Mn with ST=G. Fix G∈Mn, we say that G is an all-multiplicative point if every multiplicative linear bijection φ at G with φ(In)=In is a multiplicative mapping in Mn, where In is the unit matrix in Mn. We mainly show in this paper the following two results: (1) If G∈Mn with detG=0, then G is an all-multiplicative point in Mn; (2) If φ is an multiplicative mapping at In, then there exists an invertible matrix P∈Mn such that either φ(S)=PSP-1 for any S∈Mn or φ(T)=PTtrP-1 for any T∈Mn.
Related Topics
Physical Sciences and Engineering
Mathematics
Algebra and Number Theory