Article ID Journal Published Year Pages File Type
4601572 Linear Algebra and its Applications 2010 14 Pages PDF
Abstract

For a square matrix A, let S(A) be an eigenvalue inclusion set such as the Gershgorin region, the Brauer region in terms of Cassini ovals, and the Ostrowski region. Characterization is obtained for maps Φ on n×n matrices satisfying S(Φ(A)-Φ(B))=S(A-B) for all matrices A and B. From these results, one can deduce the structure of additive or (real) linear maps satisfying S(A)=S(Φ(A)) for every matrix A.

Related Topics
Physical Sciences and Engineering Mathematics Algebra and Number Theory