Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
4601612 | Linear Algebra and its Applications | 2010 | 13 Pages |
For a graph G on n vertices and a field F, the minimum rank of G over F, written as mrF(G), is the smallest possible rank over all n×n symmetric matrices over F whose (i,j)th entry (for ) is nonzero whenever ij is an edge in G and is zero otherwise. The maximum nullity of G over F is MF(G)=n-mrF(G). The minimum rank problem of a graph G is to determine mrF(G) (or equivalently, MF(G)). This problem has received considerable attention over the years. In [F. Barioli, W. Barrett, S. Butler, S.M. Cioabă, D. Cvetković, S.M. Fallat, C. Godsil, W. Haemers, L. Hogben, R. Mikkelson, S. Narayan, O. Pryporova, I. Sciriha, W. So, D. Stevanović, H. van der Holst, K.V. Meulen, A.W. Wehe, AIM Minimum Rank–Special Graphs Work Group, Zero forcing sets and the minimum rank of graphs, Linear Algebra Appl. 428 (2008) 1628–1648], a new graph parameter Z(G), the zero forcing number, was introduced to bound MF(G) from above. The authors posted an attractive question: What is the class of graphs G for which Z(G)=MF(G) for some field F? This paper focuses on exploring the above question.