Article ID Journal Published Year Pages File Type
4601619 Linear Algebra and its Applications 2010 12 Pages PDF
Abstract

Let G=(V,E) be a simple graph. Denote by D(G) the diagonal matrix of its vertex degrees and by A(G) its adjacency matrix. Then the Laplacian matrix of G is L(G)=D(G)-A(G) and the signless Laplacian matrix of G is Q(G)=D(G)+A(G). In this paper we obtain a lower bound on the second largest signless Laplacian eigenvalue and an upper bound on the smallest signless Laplacian eigenvalue of G. In [5], , Cvetković et al. have given a series of 30 conjectures on Laplacian eigenvalues and signless Laplacian eigenvalues of G (see also [1]). Here we prove five conjectures.

Related Topics
Physical Sciences and Engineering Mathematics Algebra and Number Theory