Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
4601619 | Linear Algebra and its Applications | 2010 | 12 Pages |
Abstract
Let G=(V,E) be a simple graph. Denote by D(G) the diagonal matrix of its vertex degrees and by A(G) its adjacency matrix. Then the Laplacian matrix of G is L(G)=D(G)-A(G) and the signless Laplacian matrix of G is Q(G)=D(G)+A(G). In this paper we obtain a lower bound on the second largest signless Laplacian eigenvalue and an upper bound on the smallest signless Laplacian eigenvalue of G. In [5], , Cvetković et al. have given a series of 30 conjectures on Laplacian eigenvalues and signless Laplacian eigenvalues of G (see also [1]). Here we prove five conjectures.
Related Topics
Physical Sciences and Engineering
Mathematics
Algebra and Number Theory