Article ID Journal Published Year Pages File Type
4601631 Linear Algebra and its Applications 2010 23 Pages PDF
Abstract

Let C be a smooth curve in P2 given by an equation F=0 of degree d. In this paper we consider elementary transformations of linear pfaffian representations of C. Elementary transformations can be interpreted as actions on a rank 2 vector bundle on C with canonical determinant and no sections, which corresponds to the cokernel of a pfaffian representation. Every two pfaffian representations of C can be bridged by a finite sequence of elementary transformations. Pfaffian representations and elementary transformations are constructed explicitly. For a smooth quartic, applications to Aronhold bundles and theta characteristics are given.

Related Topics
Physical Sciences and Engineering Mathematics Algebra and Number Theory