Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
4601636 | Linear Algebra and its Applications | 2010 | 5 Pages |
Abstract
Agler, Helton, McCullough, and Rodman proved that a graph is chordal if and only if any positive semidefinite (PSD) symmetric matrix, whose nonzero entries are specified by a given graph, can be decomposed as a sum of PSD matrices corresponding to the maximal cliques. This decomposition is recently exploited to solve positive semidefinite programming efficiently. Their proof is based on a characterization for PSD matrix completion of a chordal-structured matrix due to Grone, Johnson, Sá, and Wolkowicz. This note gives a direct and simpler proof for the result of Agler et al., which leads to an alternative proof of Grone et al.
Related Topics
Physical Sciences and Engineering
Mathematics
Algebra and Number Theory