Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
4601649 | Linear Algebra and its Applications | 2010 | 17 Pages |
Abstract
A nonnegative square matrix A is primitive if some power Ak>0 (that is, Ak is entrywise positive). The least such k is called the exponent of A. In [2], Akelbek and Kirkland defined the scrambling index of a primitive matrix A, which is the smallest positive integer k such that any two rows of Ak have at least one positive element in a coincident position. In this paper, we give a relation between the scrambling index and the exponent for symmetric primitive matrices, and determine the scrambling index set for the class of symmetric primitive matrices. We also characterize completely the symmetric primitive matrices in this class such that the scrambling index is equal to the maximum value.
Related Topics
Physical Sciences and Engineering
Mathematics
Algebra and Number Theory