Article ID Journal Published Year Pages File Type
4601650 Linear Algebra and its Applications 2010 11 Pages PDF
Abstract

We consider products of unitary operators with at most two points in their spectra, 1 and eiα. We prove that the scalar operator eiγI is a product of k such operators if α(1+1/(k-3))⩽γ⩽α(k-1-1/(k-3)) for k⩾5. Also we prove that for eiα≠-1, only a countable number of scalar operators can be decomposed in a product of four operators from the mentioned class. As a corollary we show that every unitary operator on an infinite-dimensional space is a product of finitely many such operators.

Related Topics
Physical Sciences and Engineering Mathematics Algebra and Number Theory