Article ID Journal Published Year Pages File Type
4601726 Linear Algebra and its Applications 2010 13 Pages PDF
Abstract

In this paper, we show that if the second largest eigenvalue of a d-regular graph is less than , then the graph is k-edge-connected. When k is 2 or 3, we prove stronger results. Let ρ(d) denote the largest root of x3-(d-3)x2-(3d-2)x-2=0. We show that if the second largest eigenvalue of a d-regular graph G is less than ρ(d), then G is 2-edge-connected and we prove that if the second largest eigenvalue of G is less than , then G is 3-edge-connected.

Related Topics
Physical Sciences and Engineering Mathematics Algebra and Number Theory