Article ID Journal Published Year Pages File Type
4601740 Linear Algebra and its Applications 2011 18 Pages PDF
Abstract

Unlike factorization theory of commutative semigroups which are well-studied, very little literature exists describing factorization properties in noncommutative semigroups. Perhaps the most ubiquitous noncommutative semigroups are semigroups of square matrices and this article investigates the factorization properties within certain subsemigroups of Mn(Z), the semigroup of n×n matrices with integer entries. Certain important invariants are calculated to give a sense of how unique or non-unique factorization is in each of these semigroups.

Related Topics
Physical Sciences and Engineering Mathematics Algebra and Number Theory