Article ID Journal Published Year Pages File Type
4601794 Linear Algebra and its Applications 2010 29 Pages PDF
Abstract

It is well known that the Sylvester matrix equation AX + XB = C has a unique solution X if and only if 0 ∉ spec(A) + spec(B). The main result of the present article are explicit formulas for the determinant of X in the case that C is one-dimensional. For diagonal matrices A, B, we reobtain a classical result by Cauchy as a special case.The formulas we obtain are a cornerstone in the asymptotic classification of multiple pole solutions to integrable systems like the sine-Gordon equation and the Toda lattice. We will provide a concise introduction to the background from soliton theory, an operator theoretic approach originating from work of Marchenko and Carl, and discuss examples for the application of the main results.

Related Topics
Physical Sciences and Engineering Mathematics Algebra and Number Theory