Article ID Journal Published Year Pages File Type
4601827 Linear Algebra and its Applications 2010 8 Pages PDF
Abstract

Let k be a natural number and let G be a graph with at least k vertices. Brouwer conjectured that the sum of the k largest Laplacian eigenvalues of G is at most , where e(G) is the number of edges of G. We prove this conjecture for k=2. We also show that if G is a tree, then the sum of the k largest Laplacian eigenvalues of G is at most e(G)+2k-1.

Related Topics
Physical Sciences and Engineering Mathematics Algebra and Number Theory