Article ID Journal Published Year Pages File Type
4601879 Linear Algebra and its Applications 2011 12 Pages PDF
Abstract

Let A be a Banach algebra with unity I and M be a unital Banach A-bimodule. A family of continuous additive mappings D=(δi)i∈N from A into M is called a higher derivable mapping at X, if δn(AB)=∑i+j=nδi(A)δj(B) for any A,B ∈ A with AB=X. In this paper, we show that D is a Jordan higher derivation if D is a higher derivable mapping at an invertible element X. As an application, we also get that every invertible operator in a nontrivial nest algebra is a higher all-derivable point.

Related Topics
Physical Sciences and Engineering Mathematics Algebra and Number Theory