Article ID Journal Published Year Pages File Type
4601880 Linear Algebra and its Applications 2011 5 Pages PDF
Abstract

A family F of square matrices of the same order is called a quasi-commuting family if (AB-BA)C=C(AB-BA) for all A,B,C∈F where A,B,C need not be distinct. Let fk(x1,x2,…,xp),(k=1,2,…,r), be polynomials in the indeterminates x1,x2,…,xp with coefficients in the complex field C, and let M1,M2,…,Mr be n×n matrices over C which are not necessarily distinct. Let and let δF(x1,x2,…,xp)=detF(x1,x2,…,xp). In this paper, we prove that, for n×n matrices A1,A2,…,Ap over C, if {A1,A2,…,Ap,M1,M2,…,Mr} is a quasi-commuting family, then F(A1,A2,…,Ap)=O implies that δF(A1,A2,…,Ap)=O.

Related Topics
Physical Sciences and Engineering Mathematics Algebra and Number Theory