Article ID Journal Published Year Pages File Type
4602017 Linear Algebra and its Applications 2009 8 Pages PDF
Abstract

The energy of a graph/matrix is the sum of the absolute values of its eigenvalues. We investigate the result of duplicating/removing an edge to the energy of a graph. We also deal with the problem that which graphs G have the property that if the edges of G are covered by some subgraphs, then the energy of G does not exceed the sum of the subgraphs’ energies. The problems are addressed in the general setting of energy of matrices which leads us to consider the singular values too. Among the other results it is shown that the energy of a complete multipartite graph increases if a new edge added or an old edge is deleted.

Related Topics
Physical Sciences and Engineering Mathematics Algebra and Number Theory