Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
4602151 | Linear Algebra and its Applications | 2010 | 21 Pages |
We use a recent result concerning the eigenvalues of a generic (non-Hermitian) complex perturbation of a bounded Hermitian sequence of matrices to prove that the asymptotic spectrum of the product of Toeplitz sequences, whose symbols have a real-valued essentially bounded product h, is described by the function h in the “Szegö way”. Then, using Mergelyan’s theorem, we extend the result to the more general case where h belongs to the Tilli class. The same technique gives us the analogous result for sequences belonging to the algebra generated by Toeplitz sequences, if the symbols associated with the sequences are bounded and the global symbol h belongs to the Tilli class. A generalization to the case of multilevel matrix-valued symbols and a study of the case of Laurent polynomials not necessarily belonging to the Tilli class are also given.