Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
4602290 | Linear Algebra and its Applications | 2009 | 12 Pages |
Abstract
The purpose of this paper is to investigate the interplay arising between max algebra, convexity and scaling problems. The latter, which have been studied in nonnegative matrix theory, are strongly related to max algebra. One problem is that of strict visualization scaling, defined as, for a given nonnegative matrix A, a diagonal matrix X such that all elements of X-1AX are less than or equal to the maximum cycle geometric mean of A, with strict inequality for the entries which do not lie on critical cycles. In this paper such scalings are described by means of the max algebraic subeigenvectors and Kleene stars of nonnegative matrices as well as by some concepts of convex geometry.
Related Topics
Physical Sciences and Engineering
Mathematics
Algebra and Number Theory