Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
4602307 | Linear Algebra and its Applications | 2010 | 26 Pages |
By the signless Laplacian of a (simple) graph G we mean the matrix Q(G)=D(G)+A(G), where A(G),D(G) denote respectively the adjacency matrix and the diagonal matrix of vertex degrees of G. It is known that connected graphs G that maximize the signless Laplacian spectral radius ρ(Q(G)) over all connected graphs with given numbers of vertices and edges are (degree) maximal. For a maximal graph G with n vertices and r distinct vertex degrees δr>δr-1>⋯>δ1, it is proved that ρ(Q(G))<ρ(Q(H)) for some maximal graph H with n+1 (respectively, n) vertices and the same number of edges as G if either G has precisely two dominating vertices or there exists an integer such that δi+δr+1-i⩽n+1 (respectively, δi+δr+1-i⩽δl+δr-l+1). Graphs that maximize ρ(Q(G)) over the class of graphs with m edges and m-k vertices, for k=0,1,2,3, are completely determined.