Article ID Journal Published Year Pages File Type
4602442 Linear Algebra and its Applications 2009 10 Pages PDF
Abstract

We show that the determinant objective function introduced in Ejov et al. [V. Ejov, J. A. Filar, W. Murray, G.T. Nguyen, Determinants and longest cycles of graph, SIAM J. Discrete Math. 22 (33) (2008) 1215–1225] performs well under a certain symmetric linear perturbation. That means sub-graphs corresponding to Hamiltonian cycles of a given graph are maximizers over the hull of all sub-graphs with perturbation parameter ε∈[0,1). Note that in other optimization formulations (see, for example [V.S. Borkar, V. Ejov, J.A. Filar, Directed graphs, Hamiltonicity and doubly stochastic matrices, Random Structures Algorithms 25 (2004) 376–395; V. Ejov, J.A. Filar, M. Nguyen, Hamiltonian cycles and singularly perturbed Markov chains, Math. Oper. Res. 29 (1) (2004) 114–131; J.A. Filar, K. Liu, Hamiltonian cycle problem and singularly perturbed Markov decision process, in: Statistics, Probability and Game Theory: Papers in Honor of David Blackwell, IMS Lecture Notes – Monograph Series, USA, 1996]), ε in the corresponding perturbation was required to be significantly small.

Related Topics
Physical Sciences and Engineering Mathematics Algebra and Number Theory