Article ID Journal Published Year Pages File Type
4602503 Linear Algebra and its Applications 2009 17 Pages PDF
Abstract

Let AG and DG be respectively the adjacency matrix and the degree matrix of a graph G. The signless Laplacian matrix of G is defined as QG=DG+AG. The Q-spectrum of G is the set of the eigenvalues together with their multiplicities of QG. The Q-index of G is the maximum eigenvalue of QG. The possibilities for developing a spectral theory of graphs based on the signless Laplacian matrices were discussed by Cvetković et al. [D. Cvetković, P. Rowlinson, S.K. Simić, Signless Laplacians of finite graphs, Linear Algebra Appl. 423 (2007) 155–171]. In the latter paper the authors determine the graphs whose Q-index is in the interval [0,4]. In this paper, we investigate some properties of Q-spectra of graphs, especially for the limit points of the Q-index. By using these results, we characterize respectively the structures of graphs whose the Q-index lies in the intervals , and (ϵ+2,4.5], where .

Related Topics
Physical Sciences and Engineering Mathematics Algebra and Number Theory