Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
4602578 | Linear Algebra and its Applications | 2008 | 5 Pages |
Abstract
We study the joint spectral radius given by a finite set of compact operators on a Hilbert space. It is shown that the normed finiteness property holds in this case, that is, if all the compact operators are contractions and the joint spectral radius is equal to 1 then there exists a finite product that has a spectral radius equal to 1. We prove an additional statement in that the requirement that the joint spectral radius be equal to 1 can be relaxed to the asking that the maximum norm of finite products of a length norm is equal to 1. The length of this product is related to the dimension of the subspace on which the set of operators is norm preserving.
Related Topics
Physical Sciences and Engineering
Mathematics
Algebra and Number Theory