Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
4602583 | Linear Algebra and its Applications | 2008 | 18 Pages |
Abstract
We provide an asymptotically tight, computationally efficient approximation of the joint spectral radius of a set of matrices using sum of squares (SOS) programming. The approach is based on a search for an SOS polynomial that proves simultaneous contractibility of a finite set of matrices. We provide a bound on the quality of the approximation that unifies several earlier results and is independent of the number of matrices. Additionally, we present a comparison between our approximation scheme and earlier techniques, including the use of common quadratic Lyapunov functions and a method based on matrix liftings. Theoretical results and numerical investigations show that our approach yields tighter approximations.
Related Topics
Physical Sciences and Engineering
Mathematics
Algebra and Number Theory