Article ID Journal Published Year Pages File Type
4602687 Linear Algebra and its Applications 2007 31 Pages PDF
Abstract

We prove the conjecture of Falikman–Friedland–Loewy on the parity of the degrees of projective varieties of n×n complex symmetric matrices of rank at most k. We also characterize the parity of the degrees of projective varieties of n×n complex skew symmetric matrices of rank at most 2p. We give recursive relations which determine the parity of the degrees of projective varieties of m×n complex matrices of rank at most k. In the case the degrees of these varieties are odd, we characterize the minimal dimensions of subspaces of n×n skew symmetric real matrices and of m×n real matrices containing a nonzero matrix of rank at most k. The parity questions studied here are also of combinatorial interest since they concern the parity of the number of plane partitions contained in a given box, on the one hand, and the parity of the number of symplectic tableaux of rectangular shape, on the other hand.

Related Topics
Physical Sciences and Engineering Mathematics Algebra and Number Theory