Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
4602687 | Linear Algebra and its Applications | 2007 | 31 Pages |
We prove the conjecture of Falikman–Friedland–Loewy on the parity of the degrees of projective varieties of n×n complex symmetric matrices of rank at most k. We also characterize the parity of the degrees of projective varieties of n×n complex skew symmetric matrices of rank at most 2p. We give recursive relations which determine the parity of the degrees of projective varieties of m×n complex matrices of rank at most k. In the case the degrees of these varieties are odd, we characterize the minimal dimensions of subspaces of n×n skew symmetric real matrices and of m×n real matrices containing a nonzero matrix of rank at most k. The parity questions studied here are also of combinatorial interest since they concern the parity of the number of plane partitions contained in a given box, on the one hand, and the parity of the number of symplectic tableaux of rectangular shape, on the other hand.