Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
4602701 | Linear Algebra and its Applications | 2009 | 45 Pages |
Let G be an undirected graph on n vertices and let S(G) be the set of all real symmetric n×n matrices whose nonzero off-diagonal entries occur in exactly the positions corresponding to the edges of G. The inverse inertia problem for G asks which inertias can be attained by a matrix in S(G). We give a complete answer to this question for trees in terms of a new family of graph parameters, the maximal disconnection numbers of a graph. We also give a formula for the inertia set of a graph with a cut vertex in terms of inertia sets of proper subgraphs. Finally, we give an example of a graph that is not inertia-balanced, which settles an open problem from the October 2006 AIM Workshop on Spectra of Families of Matrices described by Graphs, Digraphs and Sign Patterns. We also determine some restrictions on the inertia set of any graph.